11. EFI SYSTEM

FUEL INJECTION SYSTEM

FUEL PUMP/FUEL LEVEL SENSOR -- 11- 2
WATER TEMPERATURE SENSOR--- 11- 5
THROTTLE BODY/T-MAP SENSOR/ISC/TPS --------------------------------- 11- 6
DIAGNOSTIC TOOL CONNECTOR--- 11- 9
TPS/ISC RESET--- 11-10
ECU -- 11-11
CELP-- 11-13
CELP FAILURE CODES LIST--- 11-15
TILT SWITCH--- 11-17
TROUBLESHOOTING--- 11-18
DIAGNOSTIC REPORT--- 11-19
DIAGNOSTIC OPERATION PROCEDURE-- 11-20
11. EFI SYSTEM

FUEL PUMP/FUEL LEVEL SENSOR

The electric fuel pump and fuel level sensor are not serviceable components. If either component fails, it must be replaced as a set.

TESTING

* Whenever any maintenance or inspection is made on the fuel system during which there may be fuel leakage, there should be no welding, smoking, open flames, etc., in the area.

Prior to removing the electric fuel pump, the following check should be performed to determine that removal is necessary.

1. Turn the ignition switch ON and listen for a momentary “whirring” sound of the pump building pressure. If the sound is heard (10 seconds), no electrical checks are necessary. Turn the ignition switch OFF.

2. Disconnect the gasoline hose from the throttle body; then install a suitable pressure gauge.

* Gasoline may be under pressure. Place an absorbant towel under the connector to absorb any gasoline spray when disconnecting.

3. Turn the ignition switch to the ON position. The fuel pressure should build until the pump shuts off. Pressure should read 3.0 kg-cm2 (43 psi).

4. If the pump is not running, disconnect the fuel pump/tank sensor connector.
5. Connect a multimeter to the power supply leads with the orange/red tester lead to the red wire and the black tester lead to the black wire; then turn the ignition switch to the ON position. The meter should read battery voltage. If battery voltage is indicated and the fuel pump does not run, replace the pump assembly. If no battery voltage is indicated, check the ECU and the vehicle tilt sensor.

REMOVING

1. Remove the rear rack and fenders; then disconnect the power supply/fuel pump connector.
2. Remove the spring clamp; then remove the fuel hose.
3. Remove the screws securing the fuel pump to the gas tank; then make a reference mark on the fuel pump and tank.
4. Lift out the fuel pump assembly carefully tilting it forward to clear the voltage regulator; then guide the pump and float lever through the opening in the gas tank.

* Take care not to damage the float or float arm or replacement of the entire assembly will be necessary.

5. Using duct tape or other suitable means, cover the fuel pump opening.

INSPECTING

1. Inspect the fuel screen and blow clean with low pressure compressed air.
2. Move the float lever and check for free movement. The float assembly should return to the lower position without force. If not, replace the fuel pump assembly.
3. Test the fuel level sensor by connecting a multimeter (A) to the fuel level sensor leads (B); then select OHMS. The multimeter should show 101 ohms at full fuel position (C) and 3 ohms at empty fuel position (D).

INSTALLATION

1. Mark the new fuel pump with a reference mark in the same location as the removed pump; then place the new gasket on the pump.
2. Remove the material covering the fuel pump opening; then carefully guide the fuel pump into position taking care not to damage the float or float lever.
3. Rotate the fuel pump until the match marks align; then install the mounting screws and tighten securely using a fixed pattern.

* It is important to install the fuel pump with the correct orientation to ensure adequate float lever clearance.

4. Connect the wires, fuel hose, and spring clamp; then turn the ignition switch to the ON position. Note that the fuel pump runs momentarily and the fuel gauge indicate the proper fuel level.
5. With the transmission in neutral and brake level lock engaged, start the engine and checks for normal operation. Check for any fuel leaks.
6. Install any wire ties that were removed; then install the rear fenders, rack, and seat making sure the seat locks securely.
WTS SENSOR (Water Temperature Sensor)

REMOVAL/INSTALLATION
Drain the coolant from the cooling system.
Disconnect the WTS sensor connector from the sensor.
Remove the WTS sensor and O-ring.

Install a new O-ring and WTS sensor.

* Always replace an O-ring with a new one.

Tighten the WTS sensor to the specified torque.

Torque: 1.2 kgf-m (12 N-m, 8.6 lbf-ft)

Connect the WTS sensor connector.
Fill the cooling system with the recommended coolant.

INSPECTION
Measure the resistance at the WTS sensor terminals.

STANDARD

<table>
<thead>
<tr>
<th>℃</th>
<th>-20</th>
<th>40</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>KΩ</td>
<td>28.6</td>
<td>1.46</td>
<td>0.176</td>
</tr>
</tbody>
</table>

Standard: 3.51±10% KΩ (at 20°C/68°F)
11. EFI SYSTEM

THROTTLE BODY
/T-MAP SENSOR/ISC/TPS

- Turn off the ignition switch while replacement.
- Check and confirm if the voltage is over 12V by a voltmeter after replacement.
- Check and confirm if the other connectors are installed correctly after replacement.
- Do not damage the throttle body, it may cause the throttle and idle valve isn’t synchronization.
- The throttle body is preset in KYMCO factory, do not disassemble it by a wrong way.
- Do not loosen or tighten the painted bolts and screws for the throttle body. Loosen or tighten them can cause the throttle and idle valve to synchronization failure.
- TPS and ISC have to be reset after the throttle body T-MAP, TPS, ISC or ECU has been reinstalled.

T-MAP SENSOR INSPECTION
Support the scooter on a level surface.
Put the side stand up and engine stop switch is at “RUN”.

Turn the ignition switch to “ON” position.

Measure if the ECU voltage outputs to the T-MAP sensor between the following terminals of the MAP connector.

<table>
<thead>
<tr>
<th>Terminal</th>
<th>Normal</th>
</tr>
</thead>
<tbody>
<tr>
<td>V/R (+) - V/G (-)</td>
<td>5 V</td>
</tr>
</tbody>
</table>
11. EFI SYSTEM

TPS INSPECTION

Support the ATV on a level surface.
Turn the ignition switch to “ON”.
Measure if the ECU voltage outputs to TPS between the following terminals of the TPS connector.

<table>
<thead>
<tr>
<th>Terminal</th>
<th>Normal</th>
</tr>
</thead>
<tbody>
<tr>
<td>V/R (+) -V/G(-)</td>
<td>5 V</td>
</tr>
</tbody>
</table>

Throttle position sensor (TPS) resistance
3500–6500 Ω (at 20°C/68°F)

REMOVAL

Loosen the throttle cables with the adjusting nuts.
Disconnect the throttle cable ends from throttle seat.

Disconnect the TPS, ISC and T- MAP sensor connectors.
Loosen the air cleaner connecting hose band screw.
Loosen the intake manifold band screw.
Remove the throttle body, T-MAP sensor, TPS sensor and ISC sensor as a set.
11. EFI SYSTEM

DISASSEMBLY

Remove the screws and then remove the ISC.
Remove the screw.
Remove the T-MAP sensor.
Remove the screw and then remove the TPS.

ASSEMBLY

Apply oil onto a new O-ring.
When install the TPS onto the throttle body, being careful not to damage the O-ring.
Install and tighten the screw securely.

* The throttle position sensor (TPS) and idle air bypass valve (ISC) have to reset when the throttle body T-MAP sensor, TPS, ISC or ECU has been reinstalled.
Apply oil onto a new O-ring.

When install the T-MAP sensor onto the throttle body, being careful not to damage the O-ring.

* Always replace an O-ring with a new one.

Install the set plate and tighten the screw securely.

Apply oil onto a new O-ring. When install the ISC and T-MAP sensor onto the throttle body, being careful not to damage the O-ring.

DIAGNOSTIC TOOL CONNECTOR

INSPECTION
Remove front cover
Make sure of moving the shift lever into the “N” or “P” position.
Remove diagnostic tool connector protect sheath.
Turn the ignition switch to “ON”
Measure the voltage between the following terminals of the diagnostic tool connector.

<table>
<thead>
<tr>
<th>Terminal</th>
<th>Normal</th>
</tr>
</thead>
<tbody>
<tr>
<td>BR/L (+) G/B (-)</td>
<td>Battery voltage</td>
</tr>
<tr>
<td>B/L (+) W/L (-)</td>
<td>Battery voltage − 1 V</td>
</tr>
</tbody>
</table>
TPS/ISC RESET

- If close or open the throttle grip randomly, the ECU may record the incorrect TPS when the ECU or the throttle body has been reinstalled. It can cause hard to start engine or idling speed is not smooth when engine installation.
- ISC has a motor inside, which controls ISC valve to obtain smooth idling speed. The ECU may record the incorrect ISC position during the engine speed isn’t working when the ECU or the throttle body has been reinstalled. It can cause engine stop, hard to start engine or rough idling speed.

The throttle position sensor (TPS) and idle air bypass valve (ISC) have to be reset when throttle body, T-MAP, TPS, ISC or ECU has been reinstalled.

TPS/ISC RESET PROCEDURE

Start the engine till engine temperature to 85°C over on idle condition.

ECU will automatic learn engine new condition.
11. EFI SYSTEM

ELECTRIC CONTROL UNIT (ECU)

* • Do not disconnect or connect the ECU connector during the ignition switch “ON”; it may cause the ECU damaged.
 • The throttle position sensor (TPS) and idle air bypass valve (ISC) have to be reset when throttle body, MAP, TPS, ISC or ECU has been reinstalled.

Disconnect the ECU connector and remove the ECU from the frame.
Installation is in the reverse order of the removal.

REMOVAL

INSTALLATION
INSPECTION

Outlook checking
Checking for ECU pin(1-48) if has damage.

Checking for ECU part number is as 3920A-LGC7-E00

Voltage inspection
Connect the meter (+) probe to the B4(R/W) wire and the meter (-) probe to the M3(G/B) wire to measure the voltage.

MAP Edition No.

Page 2 as picture
CHECK ENGINE LAMP (CELP)

- When turning on the switch, the lamp will be lighted for 2 seconds then off. Let user to know the lamp is available and connect to ECU.
- But after then or during riding, if the CELP start to blink or keep lighting, it means something wrong with this vehicle, you better do the further check to find out the failure code to know which part get trouble.
- There are 3 kinds of priority grade let user to know what kind of trouble was happened.
- Priority grade 1: CELP blinks continuously. This is the most emergent situation like engine over heat. User had better to slow down the riding and go to dealer for checking.
- Priority grade 2: CELP lights all the time. It means components gets trouble or circuit something wrong. Do the further check to find out the failure code to know which part get trouble.
- Priority grade 3: CELP just blinks once suddenly and then disappear. It sometimes just warning like the RPM was too high in a short term.
How To Show Failure Code
- You can read the failure code by as below:
- Turn switch on. The CELP will be lighted for 2 seconds then off. The CELP start to blink to show the failure codes
- (The number of blinks from 1 to 22).
- If vehicle got more than one failure code, the CELP will be shown from lower number failure code and then show the other higher number one after four seconds. All the failure codes would be shown repeatedly.

How To Reset Failure Code
- After repairing the trouble, you should clear the failure code or it will still exist in the ECU memory. When you maintain this vehicle next time, it will show again and you get confuse.
- Turn switch on. The CELP will be lighted for two seconds then off.
- The CELP begins to blink to show the failure codes.
- The self-diagnosis memory data will be erased when all the failure codes has showed for 4 cycles.

Example (failure codes 1 and 2):
CELP FAILURE CODES LIST

<table>
<thead>
<tr>
<th>Blinks</th>
<th>Failure Codes</th>
<th>Fault description</th>
<th>Priority</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>P0217</td>
<td>Engine temperature overheating</td>
<td>1</td>
<td>Slow down the vehicle and go to workshop for checking immediately. Confirm if the engine temperature sensor or electric circuit is abnormality.</td>
</tr>
<tr>
<td>2</td>
<td>P0335</td>
<td>Crankshaft position sensor or circuit malfunction</td>
<td>2</td>
<td>Check if the connector of crankshaft position sensor is loose. Check if the Rotor is align to Crankshaft position sensor during the crankshaft running.</td>
</tr>
<tr>
<td>3</td>
<td>P1120</td>
<td>Throttle position sensor setting value problem</td>
<td>2</td>
<td>Make sure if the connector of Throttle position sensor is connected correctly. Check if the Throttle position sensor is adjusted.</td>
</tr>
<tr>
<td>4</td>
<td>P1121</td>
<td>Throttle position sensor output range problem</td>
<td>2</td>
<td>Make sure if the connector of Throttle position sensor is connected correctly. Check if the Throttle position sensor is adjusted.</td>
</tr>
<tr>
<td>5</td>
<td>P1122</td>
<td>Throttle position sensor movement speed problem</td>
<td>2</td>
<td>1. Make sure if the connector of Throttle position sensor is connected correctly. 2. Check if the Throttle position sensor is adjusted.</td>
</tr>
<tr>
<td>6</td>
<td>P0560</td>
<td>Battery voltage malfunction</td>
<td>1</td>
<td>1. Check if the battery voltage is lower or higher. 2. Check if the charge system is malfunction.</td>
</tr>
<tr>
<td>7</td>
<td>P0110</td>
<td>Intake air temperature circuit malfunction</td>
<td>2</td>
<td>Inlet air temperature sensor or electric circuit malfunction</td>
</tr>
<tr>
<td>8</td>
<td>P0410</td>
<td>Idle air valve circuit malfunction</td>
<td>2</td>
<td>Check if the connector of Idle air valve is loosen. Check if the resistance of valve is normal.</td>
</tr>
<tr>
<td>9</td>
<td>P0505</td>
<td>Idle speed volume control range problem</td>
<td>3</td>
<td>Check if the ISC steps range over 65 steps.</td>
</tr>
<tr>
<td>10</td>
<td>P0251</td>
<td>Injector or electric circuit problem</td>
<td>2</td>
<td>Check if the connector of Injector is loosen. Check if the ECU is signal to Injector. Check if the power source and resistance of Injector are malfunction.</td>
</tr>
<tr>
<td>Blink s</td>
<td>Failure Codes</td>
<td>Fault description</td>
<td>Priority</td>
<td>Solution</td>
</tr>
<tr>
<td>---------</td>
<td>---------------</td>
<td>-------------------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>11</td>
<td>P0350</td>
<td>Ignition coil or electric circuit malfunction</td>
<td>2</td>
<td>Check if the connector of ignition coil is loosen. Check if the ECU is signaled to Ignition coil. Check if the power source and resistance is malfunction</td>
</tr>
<tr>
<td>12</td>
<td>P0230</td>
<td>Fuel pump relay or electric circuit malfunction</td>
<td>2</td>
<td>Check if the connector of relay is loosen. Check if the ECU is signaled to relay. Check the fuel pump relay resistance</td>
</tr>
<tr>
<td>13</td>
<td>P0219</td>
<td>Engine speed is over than top speed</td>
<td>2</td>
<td>Check if the belt of CVT is broken.</td>
</tr>
<tr>
<td>14</td>
<td>P1560</td>
<td>Sensor don’t receive power source from ECU</td>
<td>2</td>
<td>Check if ECU output DC5V to sensor. Check if the power source of all sensor is DC5V. Replace a new ECU if the CELP still blinks even the output power source of ECU is normal.</td>
</tr>
<tr>
<td>15</td>
<td>P0700</td>
<td>Engine starting speed exceed CVT speed limited</td>
<td>2</td>
<td>Don’t use it at present.</td>
</tr>
<tr>
<td>16</td>
<td>P0115</td>
<td>Engine temperature sensor or electric circuit malfunction</td>
<td>2</td>
<td>Check if the connector of sensor is loosen. Check if ECU pin is broken. 3.Check if the resistance of sensor is malfunction.</td>
</tr>
<tr>
<td>17</td>
<td>P1561</td>
<td>Temperature gauge electric circuit malfunction</td>
<td>2</td>
<td>Not available</td>
</tr>
<tr>
<td>18</td>
<td>P0650</td>
<td>CELP electric circuit malfunction</td>
<td>3</td>
<td>Check if the lamp of CELP is broken. Check if the wires of CELP are broken.</td>
</tr>
<tr>
<td>21</td>
<td>P0105</td>
<td>Atmospheric Pressure Sensor/Circuit Malfunction</td>
<td>2</td>
<td>Check if the connector of sensor is loosen. Check if ECU pin is broken. Check if voltage of sensor is fit in specification.</td>
</tr>
<tr>
<td>22</td>
<td>P0110</td>
<td>Roll sensor or electric circuit malfunction</td>
<td>2</td>
<td>Check if the sensor installation direction is correct. Check if voltage of sensor is fit in specification. Check if ECU pin is broken.</td>
</tr>
</tbody>
</table>
11. EFI SYSTEM

TILT SWITCH (ROLL SENSOR) INSPECTION

Support the ATV level surface.
Turn the ignition switch to “OFF”
Remove the screws, washers and tilt switch.

* Do not disconnect the tilt switch connector during inspection.

Place the tilt switch vertical as shown, and turn the ignition switch to “ON”.
Measure the voltage between the following terminals of the tilt switch connector with the connector connected.

<table>
<thead>
<tr>
<th>Terminal</th>
<th>Normal</th>
</tr>
</thead>
<tbody>
<tr>
<td>V/R (+) - G(-)</td>
<td>5 V (ECU voltage)</td>
</tr>
<tr>
<td>B/W (+) - G(-)</td>
<td>0.4 ~ 1.4 V</td>
</tr>
</tbody>
</table>

Incline the tilt switch 65±10 degrees to the left or right with the ignition switch turned to “ON”.
Measure the voltage between the following terminals of the tilt switch connector with the connector connected.

<table>
<thead>
<tr>
<th>Terminal</th>
<th>Normal</th>
</tr>
</thead>
<tbody>
<tr>
<td>V/R (+) - G(-)</td>
<td>5 V (ECU voltage)</td>
</tr>
<tr>
<td>B/W (+) - G(-)</td>
<td>3.7 ~ 4.4 V</td>
</tr>
</tbody>
</table>

If repeat this test, first turn the ignition switch to “OFF”, then turn the ignition switch to “ON”.

REMOVAL/INSTALLATION
Disconnect the connector and remove two screws.
Remove the Tilt switch.
Installation is in the reverse order of removal.

* Install the tilt switch with its “UP” mark facing up.

Tighten the mounting screws securely.

Roll Sensor
TROUBLESHOOTING

Engine won’t start
• Battery voltage too low
• Fuel level too low
• Pinched or clogged fuel hose
• Faulty fuel pump operating system
• Clogged fuel injector
• Faulty spark plug or wrong type
• Clogged Airflow Bypass Valve
• Wet spark plug

Backfiring or misfiring during acceleration
• Ignition system malfunction

Poor performance (drive ability) and poor fuel economy
• Pinched or clogged fuel hose
• Faulty fuel injector

Engine stall, hard to start, rough idling
• Intake air leak
• Fuel contaminated/deteriorated
• Pinched or clogged fuel hose
• Idle speed miss adjusted
• Wet spark plug
11. EFI SYSTEM

Diagnostic Report

<table>
<thead>
<tr>
<th>Item</th>
<th>Date</th>
<th>Reference</th>
<th>Memo</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECU No</td>
<td></td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Hardware Ver</td>
<td></td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Software Ver</td>
<td>QC111010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Identification Marking</td>
<td>A4LGC7QKAC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Idle adapted voltage (V)</td>
<td>0.67 ± 0.05 V</td>
<td></td>
<td>Throttle closed / opened fully</td>
</tr>
<tr>
<td>TPS Opening(%)</td>
<td>0° / > 90°</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPS Voltage (V)</td>
<td>0.67 V ± 0.05 V / > 3.6 V</td>
<td>Throttle closed / opened fully</td>
<td></td>
</tr>
<tr>
<td>Engine Temp. (°C)</td>
<td>environ temp ± 2 °C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air Temp. (°C)</td>
<td>environ temp ± 2 °C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atom. Pressure (Kpa)</td>
<td>101.3 ± 3 Kpa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Battery Voltage(V)</td>
<td>≥12 V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engine speed (RPM)</td>
<td>1400 ± 100 rpm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intakes Pressure (Kpa)</td>
<td>30 ~ 40 Kpa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engine Temp. (°C)</td>
<td>> 80°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air Temp. (°C)</td>
<td>45 ~ 65°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuel Inject Interval (ms)</td>
<td>2.8 ~ 3.8 ms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ignition Timing (°)</td>
<td>9° ~ 12° BTDC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABV Opening (°)</td>
<td>< 65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDLE CO(%)</td>
<td>1.0 ~ 5.0 %</td>
<td></td>
<td>Engine working temperature: 80 ~ 95°C</td>
</tr>
<tr>
<td>Engine speed (RPM)</td>
<td>1400 ± 100 rpm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intakes Pressure (Kpa)</td>
<td>30 ~ 40 Kpa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engine Temp. (°C)</td>
<td>> 80°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air Temp. (°C)</td>
<td>45 ~ 65°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuel Inject Interval (ms)</td>
<td>2.8 ~ 3.8 ms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ignition Timing (°)</td>
<td>9° ~ 12° BTDC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABV Opening (°)</td>
<td>< 65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDLE CO(%)</td>
<td>1.0 ~ 5.0 %</td>
<td></td>
<td>Engine working temperature: 80 ~ 95°C</td>
</tr>
</tbody>
</table>

ATV FI DIAGNOSTIC TOOL
OPERATION INSTRUCTIONS
3620A-LEB2-E00(ENGLISH VERSION)

version: V1.0.7
11. FUEL SYSTEM

1. FI DIAGNOSTIC TOOL

- This tool is developed by KYMCO and for KYMCO vehicle only.
- Please refer to the specification when serving this vehicle.
- This tool is without battery inside. The power is provided from vehicle.
- This software can be updated with computer for new model through the USB cable. The power required of tool is connected with 12V battery.

- For connection, please connect this tool with the connector of ECU. It’s available when turning on the ignition switch.

- The function includes ECU version, model name, data analysis.
 - ECU version: includes model name, ECU number, identifications number and software version.
 - Failure codes: DTC reading, DTC clearing and troubleshooting.
 - Data analysis: For ECU’s software inspection.
 - Adjust: The adjust function setting is not allowed
2. DTC INSPECTION PROCEDURE

To Show four functions on the screen when switching on power.

A). ECU version: Including of model name, ECU number, identifications number and software version. Press the “Enter” button

Press the " Enter " button
B). Press the "Down " button and then turn to the first page.

C). Press the "Enter " button to check the DTC failure code
D). Press the " Enter " button

E). Press the " Enter " button

F). Display what's DTC number on this DTC-List.
Press the " Enter " button and then turn to the previous page
11. FUEL SYSTEM

G). Press the "UP" button

H). Press the "Enter" button and then turn to the previous page.

I). Press the "UP" button
J). Press the "Enter" button and then turn to the first page.
3. DTC CLEAR PROCEDURE

A). Check the DTC

![Diagnostic Tool Screen]

B). Press the " Enter " button

![Diagnostic Tool Screen]

C). Choose " Load DTC "
Press the " Down " button

![Diagnostic Tool Screen]
D). Press the "Enter" button and the indicator is lighting.

E). Clearing DTC completed if the indicator is off.
4. DATA ANALYSIS PROCEDURE

A). Press the " Down " twice

B). Choose “ Data Analyze”
Press the " Enter " button to enter page 01

C). Down-page 01
The measure figures including of Engine speed, Battery voltage and Engine speed.
Press the " Down " button to enter page 02.
11. FUEL SYSTEM

D). Down-page 02

The measure figures including of TPS position, TPI idle adapted and ISC step.

Press the “Down” button to enter page 03.

E). Down-page 03

The measure figures including of engine temperature, air temperature and intake pressure. Press the “Down” button to enter page 04.

F). Down-page 04

The measure figures including of atmosphere temperature, fuel injector interval and ignition advance. Press the “Down” button to enter page 05.
G). Down-page 05
The measure figures including of gear position and gear ratio.
Press the “Down” button to enter page 06.

H). Down-page 06
The measure figures including of rollover voltage (The function setting is not allowed).
Press the “Down” button to enter page 07.

I). Down-page 07
The measure figures including of ECU counter.

J). Press the "UP" to the previous page.